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Abstract
The point canonical transformations map the Schrödinger equation with
constant mass to a wave equation with a position-dependent effective mass.
Using such a technique we derive, for a one-dimensional inhomogeneous
system of noninteracting fermions with density ρ(x) and spatially dependent
effective mass distribution m(x), the semiclassical kinetic energy density
functional τ(ρ) in the so-called extended Thomas–Fermi model up to order
h̄2. For a given position-dependent mass, we compare numerically the total
semiclassical kinetic energy with its exact quantum mechanical counterpart.
The qualitative agreement is excellent.

PACS numbers: 05.30.Fk, 03.65.Sq, 71.10.−w

1. Introduction

The Schrödinger equation with position-dependent effective mass appears in many branches
of physics, such as in the study of abrupt and nonabrupt semiconductor heterostructures [1, 2],
quantum wells and quantum dots [3, 4]. In the context of the energy density functional
approach, the non-local contributions of the potential are also expressed in terms of a
position-dependent effective mass and the formalism has been successfully used in the study
of nuclei [5], quantum liquids [6], 3He clusters [7]. In such a formalism, one needs to know an
approximate form of the kinetic energy functional. For the latter, one may use the functional
derived from the semiclassical theory such as the extended Thomas–Fermi model (ETF) [8, 9].
In the ETF method, which is an extension of the well-known Thomas–Fermi approach, the
kinetic energy density functional τ(ρ) is expressed in terms of the local density ρ and its
gradients. This is achieved by an expansion of the density matrix in powers of h̄ (see, e.g., [10]).

The main purpose of the present work is to derive, within the ETF model, the kinetic energy
density functional for a one-dimensional inhomogeneous system of noninteracting fermions
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when the corresponding single-particle Hamiltonian contains a position-dependent effective
mass. Several contributions appeared recently in the literature, where various techniques are
applied for the solution of the associated single-particle Schrödinger-like equation [11–14].
Here we shall use the point canonical transformations (PCT) technique, which maps the
ordinary Schrödinger equation (i.e., with constant mass) onto a wave equation with a position-
dependent mass. This procedure has been used recently to obtain solutions for particular
potentials [14].

The paper is organized as follows. In section 2 we first recall the main steps of the
PCT technique. We then apply it to derive a relationship between the kinetic energy density
associated with a system of N-noninteracting particles with spatially dependent effective mass
and the corresponding fictitious inhomogeneous system with constant mass. By using the
semiclassical kinetic energy density functional for a constant mass in one dimension, derived
by Brack (up to h̄2) [15], along with the above-mentioned relationship, we shall extend the
functional for the ETF kinetic energy density consistently, up to second order in h̄2, when the
effective mass depends on the position. Numericals results are presented in section 3. Finally,
a summary and outlook are given in section 4.

2. The ETF kinetic energy density functional with position-dependent effective mass in
one dimension

Consider a one-dimensional inhomogeneous system of N-noninteracting two-fold degenerate
fermions with position-dependent mass, m(x), in a smooth potential, V (x). The single-particle
wavefunction �j(x) is assumed to satisfy the time-independent Schrödinger equation[

−h̄2

2

d

dx

(
1

m(x)

d

dx

)
+ V (x)

]
�j(x) = εj�j (x). (1)

The above equation is used for example in a one-dimensional single-band model of
a semiconductor heterostructure when the materials parameters such as the effective mass,
m(x), vary with position (see, e.g., [2]).

The single-particle density of the system is defined as

ρ(x) =
∑

εj <EF

|�j(x)|2 (2)

where EF is the Fermi energy.
For the kinetic energy density, we follow the authors of [16, 17] by investigating the two

following expressions which have been generalized here for the case where the mass depends
on position

τ(x) = −h̄2

2

∑
εj <EF

�∗
j (x)

d

dx

(
1

m(x)

d

dx
�j (x)

)
(3)

τG(x) = h̄2

2m(x)

∑
εj <EF

∣∣∣∣d�j(x)

dx

∣∣∣∣2

(4)

one can easily check that, for finite systems, the two expressions integrate to the same global
kinetic energy. Also, if the set of occupied single particles is invariant under the time reversal
symmetry, τ(x) and τG(x) are related by

τ(x) = τG(x) − h̄2

4m(x)

d2ρ(x)

dx2
+

h̄2

4m2(x)

dm(x)

dx

dρ(x)

dx
. (5)
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The above equation is the generalization, when the mass depends on position, of the well-
known relation between the two forms of the kinetic energy densities (see, e.g., equation (31)
in [17]).

Next for a constant effective mass m(x) = m0 and up to order h̄2, the one-dimensional
ETF kinetic energy density functional τG(x) is given by [15]

τG(x) = h̄2

2m0

[
π2

12
ρ3 − 1

12ρ

(
dρ

dx

)2

+
1

3

d2ρ

dx2

]
(6)

and using equation (5) one gets

τ(x) = h̄2

2m0

[
π2

12
ρ3 − 1

12ρ

(
dρ

dx

)2

− 1

6

d2ρ

dx2

]
. (7)

Note here that, in the one-dimensional case, the coefficient of the von Weizsäcker-like term is
negative. It turns out to be zero for two-dimensional systems and positive in three dimensions
(see, e.g., equations (4.74)–(4.76) in [9]).

We want now to generalize the above relations to the case with nonconstant effective
mass. A natural way to perform such an extension is to follow the scheme used in the ETF
model, which consists in finding the h̄ expansion of the matrix density operator [10]. Here
we use an alternative and simpler method. This method is based on the PCT technique which
maps the Schrödinger equation with a constant mass (reference problem) to a Schrödinger
equation with spatially dependent mass (target). Let us start with the following wave equation
with a constant mass m0:[

− h̄2

2m0

d2

dy2
+ v(y)

]
�j(y) = Ej�j (y). (8)

Here, v(y) is a local potential, �j(y) are the single-particle wavefunctions, Ej are the
eigenvalues. In a similar manner (as was done in equations (2)–(4)), we construct the single-
particle and the kinetic energy densities in terms of the �j as

ρ̃(y) =
∑

εj <EF

|�j(y)|2 (9)

τ̃ (y) = − h̄2

2m0

∑
εj <EF

�∗
j (y)

d2�j(y)

dy2
, τ̃G(y) = h̄2

2m0

∑
εj <EF

∣∣∣∣d�j(y)

dy

∣∣∣∣2

. (10)

Consider now the following transformations (PCT)

y =
∫ (

m(x)

m0

) 1
2

dx (11)

�j(y) =
(

m(x)

m0

)− 1
4

�j(x) (12)

which consist of a coordinate transformation and a wavefunction redefinition. Such
transformations map the Schrödinger equation with constant effective mass equation (8) onto
an equation with a position-dependent effective mass m(x) [14][

−h̄2

2

d

dx

(
1

m(x)

d

dx

)
+ V (x)

]
�j(x) = εj�j (x). (13)
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The potential V (x) in equation (13) is given by

V (x) = v(y) +
h̄2

8m(x)

[
1

m(x)

d2m(x)

dx2
− 7

4m2(x)

(
dm(x)

dx

)2
]

. (14)

For the energy spectrum one finds

εj = Ej (15)

which shows clearly that the two systems have the same Fermi energy εF = EF .
At this level, it is easy to write down a relationship between the two-particle densities,

ρ(x) and ρ̃(y), defined respectively by equations (2) and (9). Upon using equation (12), one
obtains

ρ(x) =
(

m(x)

m0

) 1
2

ρ̃(y). (16)

Note that the point canonical transformation conserves the normalization of the single-particle
density, i.e,

∫
ρ(x) dx = ∫

ρ̃(y) dy.
Let us now derive the relationship between the two kinetic energy densities, τG(x) and

τ̃G(y) (see: equations (4) and (10)). For that, we first differentiate both sides of equation (12)

with respect to x, and using dy

dx
= (

m(x)

m0

) 1
2 , one then gets

d�j(x)

dx
= 1

4m(x)

(
dm(x)

dx

)
�j(x) +

(
m(x)

m0

) 3
4 d�j(y)

dy
. (17)

Substituting the above equation into the right-hand side of equation (4) and using equation (10)
which defines τ̃G(y) we obtain, after some algebra,

τG(x) =
(

m(x)

m0

) 1
2

τ̃G(y) +
h̄2

2m(x)

[
ρ(x)

16m2(x)

(
dm(x)

dx

)2

+
1

4m0

(
dm(x)

dx

) (
dρ̃(y)

dy

)]
.

(18)

Now, in order to eliminate the term dρ̃(y)

dy
from the above equation, we use the relation

dρ̃(y)

dy
= m0

m(x)

(
dρ(x)

dx
− ρ(x)

2m(x)

dm(x)

dx

)
(19)

which is easily obtained from equation (16). Substituting equation (19) into equation (18), we
then get

τG(x) =
(

m(x)

m0

) 1
2

τ̃G(y) +
h̄2

2m(x)

[
− ρ(x)

16m2(x)

(
dm(x)

dx

)2

+
1

4m(x)

(
dm(x)

dx

) (
dρ(x)

dx

)]
.

(20)

We now return to the semiclassical aspect of the problem. Remember that, in the above
equation τ̃G(y) is the kinetic energy density for the constant effective mass problem, its
semiclassical expansion is given up to order h̄2 by equation (6). Clearly, a formula such as
equation (20) is useful, because here it enables one to obtain the ETF kinetic energy density
in the case when the effective mass depends on position. Therefore we substitute equation (6)
into equation (20), we obtain

τETF
G (x) = h̄2

2m0

(
m(x)

m0

) 1
2

[
π2

12
ρ̃3(y) − 1

12ρ̃(y)

(
dρ̃(y)

dy

)2

+
1

3

d2ρ̃(y)

dy2

]

+
h̄2

2m(x)

[
− ρ(x)

16m2(x)

(
dm(x)

dx

)2

+
1

4m(x)

(
dm(x)

dx

) (
dρ(x)

dx

)]
. (21)
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We seek now to remove the y dependence in the above equation and then express it in terms
of the density ρ(x), the effective mass m(x) and their derivatives. To this end, we replace
in equation (21) the density ρ̃(y) and the first derivative dρ̃(y)

dy
by their expressions given

respectively by equations (16) and (19). For the term d2ρ̃(y)

dy2 , we use

d2ρ̃(y)

dy2
=

(
m(x)

m0

)− 3
2

[
d2ρ(x)

dx2
− 3

2m(x)

(
dρ(x)

dx

dm(x)

dx

)

− ρ(x)

2m(x)

(
d2m(x)

dx2

)
+

ρ(x)

m2(x)

(
dm(x)

dx

)2
]

(22)

which can easily be obtained from equation (19). Thus, collecting all terms, one ends with
the following result:

τETF
G (x) = h̄2

2m(x)

[
π2

12
ρ3(x) − 1

12ρ

(
dρ(x)

dx

)2

+
1

3

d2ρ(x)

dx2
+

ρ(x)

4m2(x)

(
dm(x)

dx

)2

− ρ(x)

6m(x)

(
d2m(x)

dx2

)
− 1

6m(x)

(
dρ(x)

dx

dm(x)

dx

) ]
. (23)

Furthermore using equation (5) one obtains for τETF(x)

τETF(x) = h̄2

2m(x)

[
π2

12
ρ3(x) − 1

12ρ

(
dρ(x)

dx

)2

− 1

6

d2ρ(x)

dx2
+

ρ(x)

4m2(x)

(
dm(x)

dx

)2

− ρ(x)

6m(x)

(
d2m(x)

dx2

)
+

1

3m(x)

(
dρ(x)

dx

dm(x)

dx

) ]
. (24)

Note that, if one is only interested in the total or global ( i.e., upon integration) ETF
kinetic energy, one may use the simple form

T ETF
s (ρ) =

∫
τETF(x) dx

=
∫

h̄2

2m(x)

[
π2ρ3(x)

12
−

( dρ(x)

dx

)2

12ρ
−

( dm(x)

dx

)2
ρ(x)

12m2(x)
+

( dρ(x)

dx

dm(x)

dx

)
3m(x)

]
dx (25)

where the terms involving second derivatives of the particle density and the effective mass
distribution have been eliminated by performing an integration by parts.

3. Numerical results

Let us now come to the numerical comparison of the total exact quantum mechanical kinetic
energy with the ETF functional equation (25). For that, we consider the exactly (analytically)
solvable model given in [4, 13, 14] where the effective mass is taken in the form

m(x) = m0

(
γ + x2

1 + x2

)2

m(±∞) = m0 (26)

with γ being a real constant parameter. Substituting equation (26) into equation (11), and
integrating, one will obtain

y = x + (γ − 1) tan−1 x. (27)
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Table 1. Comparison, for various values of the parameter γ , of the exact kinetic energy functional
T exact

s = ∫
τ(x) dx with the ETF T ETF

s (ρ) (equation (25)). Here ρ is the exact quantum mechanical
particle density evaluated for 25 filled shells of a one-dimensional harmonic oscillator.

γ 0.4 0.6 0.8 1.0

T exact
s 313.526 312.725 312.526 312.500

T ETF
s 313.166 312.457 312.293 312.275

Now if we choose a harmonic oscillator potential v(y) = 1
2m0ω

2y2 with frequency ω, in
the ordinary Schrödinger equation (8) then using equation (12), we find that the wavefunctions
for the Schrödinger-like equation (13) are given by

�n(x) =
(

m(x)

m0

) 1
4

√
b

2n
√

πn!
exp

(
−b2y2

2

)
Hn(by)

=
√

b

2n
√

πn!

(
γ + x2

1 + x2

) 1
2

exp

(
−b2y2

2

)
Hn(by). (28)

Here, b =
√

m0ω

h̄
and Hn is the Hermite polynomial. Moreover equation (15) leads to the

following energy spectrum:

εn = h̄ω
(
n + 1

2

)
n = 0, 1, 2, . . . . (29)

Since the wavefunctions are known one can now evaluate the exact quantum mechanical
quantities ρ(x), τ (x) and T exact

s = ∫
τ(x) dx, defined in equations (2) and (3). The exact

particle density ρ(x) may now be used as an input to evaluate the ETF local and the total
kinetic energies according to equations (24) and (25) respectively. Such procedure has been
used by the authors of [16] to evaluate the Thomas–Fermi kinetic energy functional in the case
of a constant effective mass.

As an illustration, we display in table 1, for various values of the effective mass parameter
γ , the total exact and the ETF (equation (26)) kinetic energies. The latter have been calculated
by the use of the exact quantum mechanical particle density ρ(x) as an input. The calculations
have been done for N = 50 particles filling 25 lowest levels of a one-dimensional harmonic
oscillator. We used the units so that h̄ = ω = m0 = 1. We see that the ETF kinetic energy
functional agrees with the quantal one within 0.1, up to the second order. Such an agreement
has been reported for a constant effective mass at the Thomas–Fermi level [16]. This situation
[16] corresponds here to ignore the second-order terms in equation (24) and putting γ = 1.

4. Summary and outlook

We have generalized the extended Thomas–Fermi kinetic energy density functional of a one-
dimensional inhomogeneous noninteracting fermion system to the case of a position-dependent
effective mass, by means of the point canonical transformations. Numerical results performed
for a solvable model with a given nonconstant effective mass show an excellent agreement
between the total exact quantum mechanical and the semiclassical kinetic energies. The
generalization of the semiclassical functionals to finite temperature for a system of fermions
in one dimension with variable effective mass would be a natural extension of the present
work. It would also be interesting to generalize our results to higher dimensions.
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